(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(c(X, s(Y))) → f(c(s(X), Y))
g(c(s(X), Y)) → f(c(X, s(Y)))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(c(X, s(Y))) →+ f(c(s(X), Y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [Y / s(Y)].
The result substitution is [X / s(X)].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(c(X, s(Y))) → f(c(s(X), Y))
g(c(s(X), Y)) → f(c(X, s(Y)))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(c(X, s(Y))) → f(c(s(X), Y))
g(c(s(X), Y)) → f(c(X, s(Y)))
Types:
f :: c → f:g
c :: s → s → c
s :: s → s
g :: c → f:g
hole_f:g1_0 :: f:g
hole_c2_0 :: c
hole_s3_0 :: s
gen_s4_0 :: Nat → s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(8) Obligation:
TRS:
Rules:
f(
c(
X,
s(
Y))) →
f(
c(
s(
X),
Y))
g(
c(
s(
X),
Y)) →
f(
c(
X,
s(
Y)))
Types:
f :: c → f:g
c :: s → s → c
s :: s → s
g :: c → f:g
hole_f:g1_0 :: f:g
hole_c2_0 :: c
hole_s3_0 :: s
gen_s4_0 :: Nat → s
Generator Equations:
gen_s4_0(0) ⇔ hole_s3_0
gen_s4_0(+(x, 1)) ⇔ s(gen_s4_0(x))
The following defined symbols remain to be analysed:
f
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(10) Obligation:
TRS:
Rules:
f(
c(
X,
s(
Y))) →
f(
c(
s(
X),
Y))
g(
c(
s(
X),
Y)) →
f(
c(
X,
s(
Y)))
Types:
f :: c → f:g
c :: s → s → c
s :: s → s
g :: c → f:g
hole_f:g1_0 :: f:g
hole_c2_0 :: c
hole_s3_0 :: s
gen_s4_0 :: Nat → s
Generator Equations:
gen_s4_0(0) ⇔ hole_s3_0
gen_s4_0(+(x, 1)) ⇔ s(gen_s4_0(x))
No more defined symbols left to analyse.